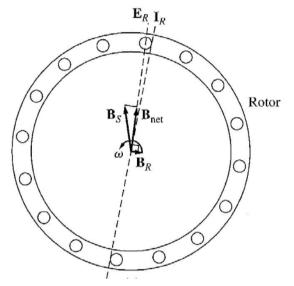
Chapter 7: Induction Motor (Part II)

Having looked at the principles of operation and equivalent circuit of the induction motor, an examination of the torque-speed relationship will be carried out.

Induction motor torque-speed characteristics 7.5.

Induced torque from a physical standpoint

No load condition



On the left is a figure of the magnetic fields in an induction motor at no load

rotor speed very nearly at

Currents in the stator will produce a stator field \overline{B}_{s} .

The induced rotor currents will

also produce field $\overline{B}_{\rm R}$.

The **net magnetic field**, \overline{B}_{net} is produced by the **combination of these** two fields, whereby:

- \$\overline{B}\$_net is produced by magnetising current \$\overline{I}_M\$
 \$|\overline{I}_M|\$ and hence \$\overline{B}\$_net directly proportional to \$\overline{E}_1\$

(refer to the induction motor equivalent circuit)

If \overline{E}_1 is constant \square

In reality, \overline{E}_1 varies as load changes due to the voltage drops across the stator impedances R_1 and X_1 .

However, these voltage drops are relatively small

 \square So \overline{E}_1 is approximately constant with changes in load

At no load:

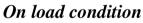
- n_m is near n_{sync} \longrightarrow slip *s* is very small (relative motion between rotor and \overline{B}_{net} is small)
- the rotor induced voltage \overline{E}_{R} ______(since $e_{ind} \propto v_{rel}$)
- Small \bar{I}_{R} produces <u>a small magnetic field \bar{B}_{R} </u> at an angle **slightly** greater than 90° behind \bar{B}_{net} .
- Therefore, the **induced torque** will be ______ due to small \vec{B}_R (just enough to overcome the motor's rotational losses) since:

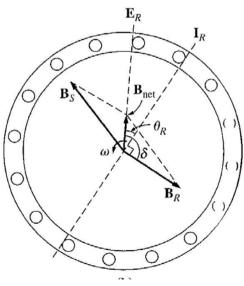
$$\tau_{\rm ind} = k\bar{B}_{\rm R} \times \bar{B}_{\rm net}$$

and the magnitude is given by

$$\tau_{\rm ind} = k B_{\rm R} B_{\rm net} \sin \delta$$

Note: Even though \bar{I}_R is small, \bar{I}_S must be quite large to supply most of \bar{B}_{net} . Hence, large no load currents in IM's compared to other types of machines.





On the left is a figure of the magnetic fields in a **loaded induction motor**

• As the **load increases**, slip *s* increases and the **rotor speed**

• A rotor induced voltage \overline{E}_R is produced. Hence, \overline{I}_R flowing will be larger.

• Hence, \overline{B}_{R} also _____

- However, the angle of *I*_R and *B*_R changes since: larger slip rise in *f*_r increase in *X*_R.
 Therefore, *I*_R lags further behind *E*_R.
- The torque angle δ has also _____

The increase in \bar{B}_{R} tends to increase the torque whereas the increase in δ tends to decrease torque (since $\delta > 90^\circ$).

But the effect of \bar{B}_{R} is larger than the effect of increase in δ .

Hence, the overall torque increases to supply the motor's increased load.

As load is further increased (δ increases):

'sin δ ' term decreases (the value is going towards the 0 cross over point for a sine wave) at a much greater rate than the increment of \overline{B}_{R} .

At this point, any further increase will reduce torque and hence will stop the motor. This effect is known as **pullout torque**.

Modelling the torque-speed characteristics of an induction motor

We know that, $\tau_{ind} = kB_R B_{net} \sin \delta$.

Each term can be considered separately to derive the overall torque behaviour:

- a) $\bar{B}_{R} \propto \bar{I}_{R}$ (provided the rotor core is unsaturated). Hence, $\bar{B}_{\rm R}$ increases with $\bar{I}_{\rm R}$ which in turn increases with slip (decrease in speed).
- b) $\bar{B}_{net} \propto \bar{E}_{R}$ and will remain **approximately constant**.
- The angle δ increases with slip. Hence, 'sin δ term decreases. c) From the figure of the induction motor on load condition, $\delta = \theta_{\rm R} + 90^{\circ}$

Where $\theta_{\rm R}$ = the rotor power-factor angle Therefore, $\sin \delta = \sin(\theta_R + 90^\circ) = \cos \theta_R =$ power factor of rotor Rotor power factor angle can be calculated since:

$$\theta_{\rm R} = \tan^{-1} \frac{X_{\rm R}}{R_{\rm R}} = \tan^{-1} \frac{s X_{\rm R0}}{R_{\rm R}}$$

Hence, the rotor power factor:

The **torque-speed characteristic** can be constructed from the graphical manipulation of the three properties (a)-(c) which is shown on the next page.

The characteristic curve can be divided into three regions:

- 1. *Low-slip region* ($s \uparrow$ linearly, $n_m \downarrow$ linearly):
 - $X_{\rm R}$ negligible \Rightarrow PF_R ≈ 1
 - \bar{I}_{R} increases linearly with *s*

Contains the entire steady-state **normal operating range** of an induction motor.

2. Moderate-slip region:

- $X_{\rm R}$ same order of magnitude as $R_{\rm R} \Rightarrow {\rm PF}_{\rm R}$ droops
- \bar{I}_{R} doesn't increase as rapidly as in low-slip region

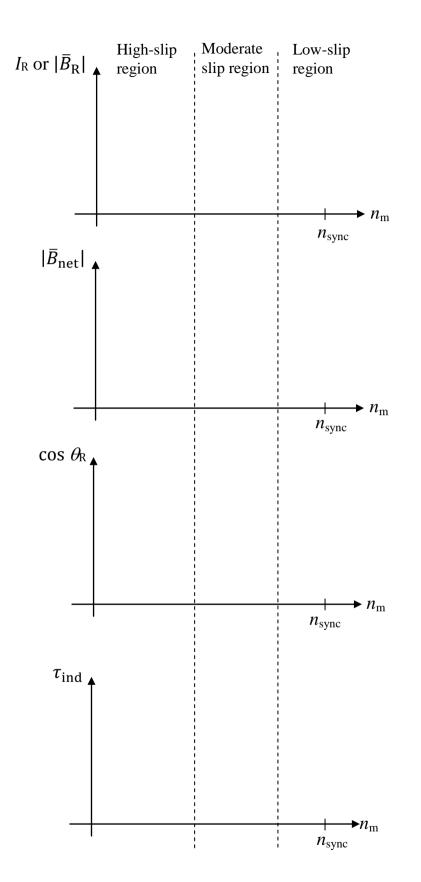
Peak torque (pullout torque) occurs in this region.

3. High-slip region:

- Increase in \overline{I}_{R} completely overshadowed by decrease in PF_R.
- τ_{ind} decreases with increase in load

Note:

- Typical pullout torque $\approx 200\%$ to 250% of τ_{rated} .
- The starting torque $\approx 150\%$ of the τ_{rated} . Hence induction motor may be started at full load.



<u>The derivation of the induction motor induced-torque</u> <u>equation</u>

A general expression for induced torque can be derived from the equivalent circuit of the motor as well as the power flow diagram.

It is known that,

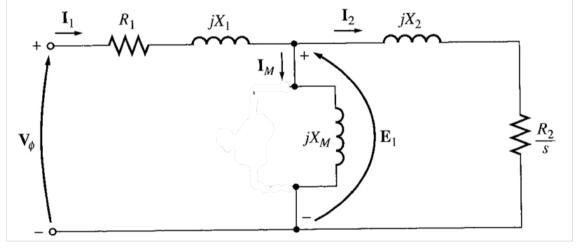
$$\tau_{\rm ind} = \frac{P_{\rm conv}}{\omega_{\rm m}}$$

or

$$\tau_{\rm ind} = \frac{P_{\rm AG}}{\omega_{\rm sync}}$$

The latter is more useful since ω_{sync} is always constant. Hence, to find an expression for τ_{ind} , we must derive an expression for P_{AG} .

Referring to the **per-phase equivalent circuit** of the motor:



$$P_{\rm AG} = I_2^2 \frac{R_2}{s}$$

Therefore, the total air gap power:

$$P_{\rm AG} = 3I_2^2 \frac{R_2}{s}$$

Hence, if I_2 can be determined, then P_{AG} and is τ_{ind} known.

6

This can be easily achieved by constructing a **Thevenin equivalent** circuit to the left of the impedances X_2 and R_2/s .

Thevenin's theorem states that any linear circuit that can be separated by two terminals from the rest of the system can be replaced by a single voltage source in series with an equivalent impedance.

Therefore, the **per-phase equivalent circuit** reduces to the following **Thevenin equivalent circuit**:

Calculation via Thevenin equivalent method:

1) Derive the **Thevenin voltage** (potential divider rule): open-circuit the terminals after the R_c and X_m branch. Hence,

$$\bar{V}_{\rm TH} = \frac{jX_{\rm M}}{R_1 + jX_1 + jX_{\rm M}} \bar{V}_{\phi}$$

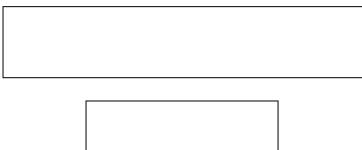
Hence, the **magnitude** is:

Since $X_{\rm M} >> X_1$ and $X_1 + X_{\rm M} \gg R_1$, the magnitude of the Thevenin voltage is quite accurately approximated by:

2) Find the **Thevenin impedance:** take out the source and replace by a short circuit. Hence,

$$Z_{\rm TH} = R_{\rm TH} + jX_{\rm TH} = \frac{jX_{\rm M}(R_1 + jX_1)}{R_1 + j(X_1 + X_{\rm M})}$$

Again, since $X_{\rm M} >> X_1$ and $X_1 + X_{\rm M} \gg R_1$,



3) Therefore, the current \bar{I}_2 flowing in the Thevenin equivalent circuit of the induction motor is given by:

$$\bar{I}_2 = \frac{\bar{V}_{\text{TH}}}{R_{\text{TH}} + \frac{R_2}{s} + j(X_{\text{TH}} + X_2)}$$

And the current magnitude will be:

$$|\bar{I}_2| = I_2 = \frac{V_{\text{TH}}}{\sqrt{\left(R_{\text{TH}} + \frac{R_2}{S}\right)^2 + (X_{\text{TH}} + X_2)^2}}$$

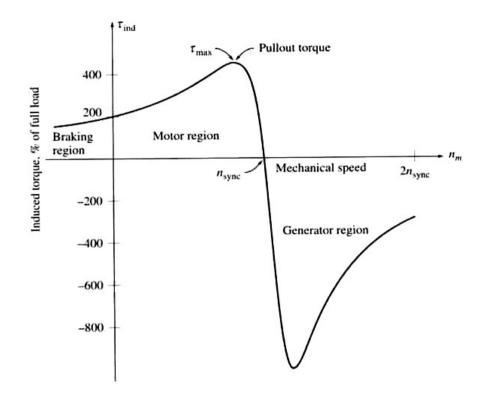
Hence, the **air gap power** is:

$$P_{\rm AG} = 3I_2^2 \frac{R_2}{s} = \frac{3V_{\rm TH}^2 \frac{R_2}{s}}{\left(R_{\rm TH} + \frac{R_2}{s}\right)^2 + (X_{\rm TH} + X_2)^2}$$

Finally, the **induced torque expression** is:

$$\tau_{\rm ind} = \frac{P_{\rm AG}}{\omega_{\rm sync}}$$

A **plot of the induction motor torque as a function of speed** (and slip) above and below the normal operating range is shown in the next page.

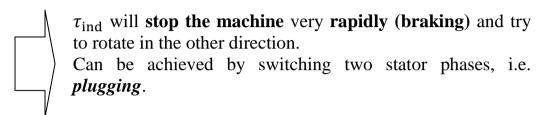


<u>Comments on the induction motor torque-speed curve</u>

- 1) At synchronous speed, $\tau_{ind} = 0$.
- 2) The curve is nearly linear between no load and full load.
- 3) The maximum torque is known as **pullout torque** or **breakdown torque**. It is approximately 2 to 3 times the rated full-load torque of the motor.
- 4) The **starting torque** is slightly **larger** than its full-load torque. So, IM will start carrying any load it can supply at full power
- 5) Torque for a given slip varies as **square** of the **applied voltage**. This is useful as one form of IM speed control.

6) If rotor is driven **faster than synchronous speed**,

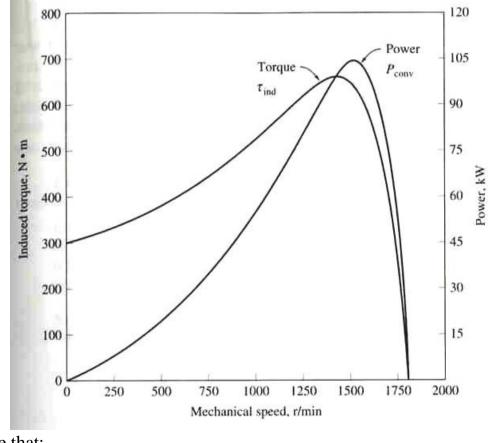
7) If motor is **turning backward relative** to the **direction** of magnetic fields (achieved by reversing the magnetic field rotation direction),



The power converted to mechanical form in an induction motor is:

$$P_{\rm conv} = \tau_{\rm ind} \omega_{\rm ind}$$

Hence, a characteristic to show the variation of converted power with speed (i.e. load) can be obtained.



Note that:

- **Peak power supplied** by the induction motor occurs at **different speed** to **maximum torque**.
- No power is converted when rotor speed = 0.

Maximum (Pullout) torque in an induction motor

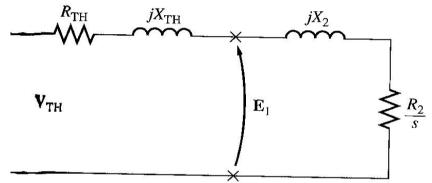
Maximum τ_{ind} occurs when P_{AG} is maximum.

 P_{AG} is maximum when power consumed by resistor R_2/s is maximum.

According to the maximum power transfer theorem:

Maximum power transfer is achieved when the magnitude of the load impedance is equal to the source impedance.

Hence, referring to the Thevenin equivalent circuit of the induction motor:



Source impedance = $Z_{\text{source}} = R_{\text{TH}} + jX_{\text{TH}} + jX_2$

Load impedance $=\frac{R_2}{s}$

Hence, maximum power transfer occurs when:

$$\frac{R_2}{s} = \sqrt{R_{\rm TH}^2 + j(X_{\rm TH} + X_2)^2}$$

Solving equation above for slip, we see that the **slip at pullout torque** is given by:

$$s_{\max} = \frac{R_2}{\sqrt{R_{\text{TH}}^2 + j(X_{\text{TH}} + X_2)^2}}$$

Hence, the resulting equation for the **maximum or pullout torque** is:

$$\tau_{\rm max} = \frac{3V_{\rm TH}}{2\omega_{\rm sync} \left[R_{\rm TH} + \sqrt{R_{\rm TH}^2 + (X_{\rm TH} + X_2)^2} \right]}$$

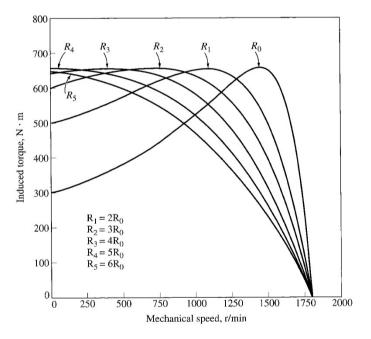
From this we see that:

- Torque is related to the square of supplied voltage.
- Torque is inversely proportional to stator impedances and rotor reactance.
- *s*_{max} is directly proportional to *R*₂.
- τ_{max} is independent of R_2 .

As increase R_2 (i.e. increase s_{max}):

- **pullout speed** of motor **decreases**
- maximum torque remains constant
- starting torque increases

This is **an advantage of** a **wound rotor** induction motor.



Example 7.4

A 2-pole, 50-Hz induction motor supplies 15 kW to a load at a speed of 2950 r/min.

(a) What is the motor's slip?

- (b) What is the induced torque in the motor in Nm under these conditions?
- (c) What will the operating speed of the motor be if its torque is doubled?
- (d) How much power will be supplied by the motor when the torque is doubled?

Example 7.5

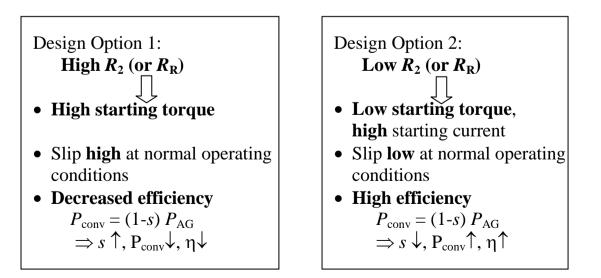
A 460-V, 18.65-kW, 60-Hz, 4-pole, Y-connected wound rotor induction motor has the following impedances in ohms per-phase referred to the stator circuit:

$$R_1 = 0.641 \ \Omega$$
 $R_2 = 0.332 \ \Omega$ $X_1 = 1.106 \ \Omega$ $X_2 = 0.464 \ \Omega$ $X_m = 26.3 \ \Omega$

- (a) What is the max torque of this motor? At what speed and slip does it occur?
- (b) What is the starting torque?
- (c) When the rotor resistance is doubled, what is the speed at which the max torque now occurs? What is the new starting torque?

7.6. <u>Variations in induction motor torque-speed characteristics</u>

Based on the properties of the induction motor torque-speed characteristics, machine designers are faced with a dilemma – high stating torque or high efficiency?



Solution 1:

Use a **wound rotor induction motor** with:

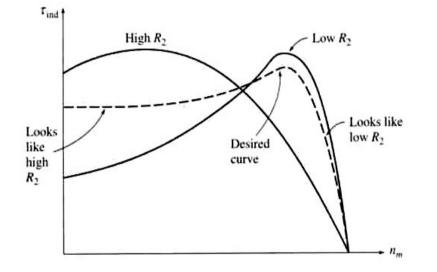
- extra resistance added to rotor during starting
- then removed for better efficiency during normal operations

But wound rotor motors are:

- more expensive
- need more maintenance
- more complex automatic control circuit

Better solution:

Utilise leakage reactance in induction motor design to achieve the desired torque-speed curve shown below.



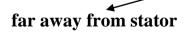
Torque-speed characteristics curve combining highresistance effects at low speeds (high slip) with low resistance effects at high speed (low slip).

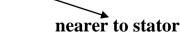
Control of motor characteristics by cage rotor design

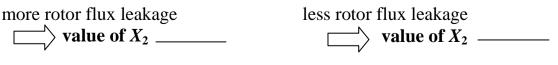
Leakage reactance, X_2 (referred rotor leakage reactance) is due to

 \longrightarrow rotor flux lines that do not couple with stator windings

If **rotor bar** (or part of a bar) is:







Generally, the farther away the rotor bar is from the stator, the greater is X_2 , since only a small percentage of the bar's flux will reach the stator.

Typical rotor designs:	
------------------------	--

	Class A	Class D
National Electrical Manufacturers Association (NEMA) design		
Rotor bars	Quite large cross section, placed near surface	Small cross section, placed near surface
R_2 or $R_{\rm R}$		
X ₂		
Pullout torque occurs at	Near n_{sync} (low slip)	Far from n_{sync} (high slip)
Starting torque		
Starting current	High	Low
Efficiency		
Typical applications	 driving fans pumps other machine tools 	Extremely high-inertia type loads

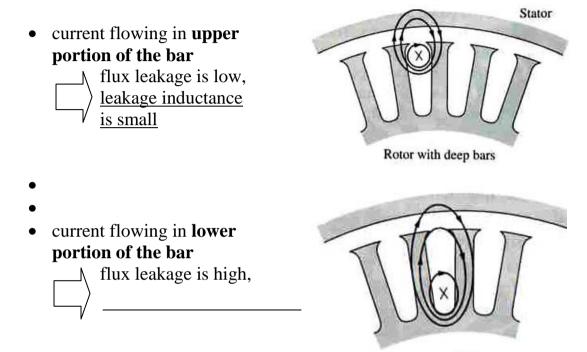
NEMA Class A = typical induction motor design NEMA Class D = like wound rotor induction motor

with **extra resistance added** to rotor.

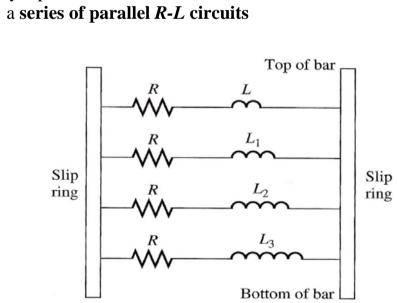
How can a variable rotor resistance be produced to combine the high starting torque and low starting current of Class D with the low normal operating slip and high efficiency of Class A?

Deep-bar and double-cage rotor designs

The basic concept is illustrated below:



Since all parts of the rotor bar are parallel electrically, the bar essentially represents



NEMA design Class B (deep-bar rotor)

Description: Wide cross-sectional bars in deep slots.

Upper part of a deep rotor bar: the current flowing is tightly coupled to the stator, and hence the **leakage inductance is small** in this region.

Deeper in the bar: the leakage inductance is higher.

At low slips:

- low rotor frequency
- *X* lower in all parallel paths (compared to *R*)
- impedance of all parts of bar approx. equal to *R*
- equal current flows through all parts of bar
- *R*_R small (due to large effective cross-sectional area), hence good efficiency and higher normal operation speed.

At high slips (starting conditions):

- higher rotor frequency
- *X* higher in all parallel paths (compared to *R*)
- current flow concentrated at upper-part of bar (low-reactance part)
- *R*_R high (due to lower effective cross-sectional area), hence high starting torque and lower starting current (compared to Class A).

Application: similar to class A.

NEMA design Class C (double-cage rotor)

Description: Large, low resistance set of bars buried deeply in the rotor AND small, high resistance set of bars at rotor surface.

It is similar to the deep-bar rotor, except that the difference between lowslip and high-slip operation is even **more exaggerated**.

At high slips (starting conditions):

- only small bars are effective
- $R_{\rm R}$ high, hence high starting torque

At low slips (normal operating speeds):

- both bars are effective
- $R_{\rm R}$ almost as low as in deep-bar rotor
- Good efficiency

Application: for high starting torque load such as loaded pumps, compressors and conveyors.

Typical torque-speed curves for different rotor designs

